Feature Selection and Classification of Intrusion Detection System Using Rough Set
نویسندگان
چکیده
With the expansion of computer network there is a challenge to compete with the intruders who can easily break into the system. So it becomes a necessity to device systems or algorithms that can not only detect intrusion but can also improve the detection rate. In this paper we propose an intrusion detection system that uses rough set theory for feature selection, which is extraction of relevant attributes from the entire set of attributes describing a data packet and used the same theory to classify the packet if it is normal or an attack. After the simplification of the discernibility matrix we were to select or reduce the features. We have used Rosetta tool to obtain the reducts and classification rules. NSL KDD dataset is used as training set and is provided to Rosetta to obtain the classification rules. KeywordsIntrusion Detection System, Rough Set Theory, NSL KDD dataset, feature reduction, feature selection, Rosetta.
منابع مشابه
Anomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors
Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...
متن کاملA Rough Set based Feature Selection Algorithm for Effective Intrusion Detection in Cloud Model
There exist many problems in intrusion detection systems such as large data volume, features and data redundancy which seriously affect the efficiency of the detection algorithm. Such problems need to be addressed in developing reliable intrusion detection systems. In this paper, we propose an intrusion detection model that combines Rough Set based Feature Selection Algorithm and Fuzzy SVM for ...
متن کاملA hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts
High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...
متن کاملAnomaly Detection using Feature Selection and SVM Kernel Trick
Analysis of system security becomes a major task for researchers. Intrusion detection plays a vital role in the security domain in these days, Internet usage has been increased enormously and with this, the threat to system resources has also increased. Anomaly based intrusion changes its behaviour dynamically, to detect these types of intrusions need to adopt the novel approaches are required....
متن کاملIntrusion Detection based on a Novel Hybrid Learning Approach
Information security and Intrusion Detection System (IDS) plays a critical role in the Internet. IDS is an essential tool for detecting different kinds of attacks in a network and maintaining data integrity, confidentiality and system availability against possible threats. In this paper, a hybrid approach towards achieving high performance is proposed. In fact, the important goal of this paper ...
متن کامل